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Background. Type 2 diabetes mellitus (T2DM) has become a chronic disease, serious harm to human health. Complications of the
blood pipe are the main cause of disability and death in diabetic patients, including vascular lesions that directly affects the
prognosis of patients with diabetes and survival. This study was to determine the influence of high glucose and related
mechanism of vascular lesion of type 2 diabetes mellitus pathogenesis. Methods. In vivo aorta abdominalis of GK rats was
observed with blood pressure, heart rate, hematoxylin and eosin (H&E), Masson, and Verhoeff staining. In vitro cells were
cultured with 30mM glucose for 24 h. RT-QPCR was used to detect the mRNA expression of endothelial markers PTEN, PI3K,
Akt, and VEGF. Immunofluorescence staining was used to detect the expression of PTEN, PI3K, Akt, and VEGF. PI3K and Akt
phosphorylation levels were detected by Western blot analysis. Results. Heart rate, systolic blood pressure, diastolic blood
pressure, and mean blood pressure in the GK control group were higher compared with the Wistar control group and no
difference compared with the GK experimental model group. Fluorescence intensity of VEGF, Akt, and PI3K in the high-sugar
stimulus group was stronger than the control group; PTEN in the high-sugar stimulus group was weakening than the control
group. VEGF, Akt, and PI3K mRNA in the high-sugar stimulus group were higher than the control group; protein expressions
of VEGF, Akt, and PI3K in the high-sugar stimulus group were higher than the control group. PTEN mRNA in the high-sugar
stimulus group was lower than the control group. Protein expression of PTEN in the high-sugar stimulus group was lower than
the control group. Conclusions. Angiogenesis is an important pathogenesis of T2DM vascular disease, and PTEN plays a
negative regulatory role in the development of new blood vessels and can inhibit the PI3K/Akt signaling pathway.

1. Introduction

Diabetes is a common chronic disease with enhanced glucose
levels occurring in the long term, which have an impact on
the body and exert a number of negative effects [1]. In diabe-
tes mellitus, glucose lipid metabolism disorders, ischemia
hypoxia, inflammatory stimulation, and growth factors all
promote angiogenesis. Atherosclerosis is a type of chronic
pathological change in the middle arteries, which is the basis
of the formation of diabetic vascular complications. Vascular
endothelial dysfunction is considered to be the earliest man-
ifestation of atherosclerosis and is a necessary initial stage of
atherosclerosis [2, 3]. One previous study demonstrated that
endothelial dysfunction serves a vital role in vascular disease

which is caused by diabetes mellitus [4]. The endothelium is
in direct contact with the bloodstream, meaning it may
become a prospective target for drug delivery.

Phosphoinositide 3-kinase (PI3K) may induce endothe-
lial cell migration and proliferation in endothelial cells
through manifold signaling pathways. PI3K-protein kinase
B (Akt) signaling pathways may be a potential therapeutic
method. When the oxidative stress links postprandial hyper-
glycaemia with endothelial dysfunction, patients with diabe-
tes may present raised oxidant and reduced antioxidant levels
[5]. The PI3K-Akt signaling pathway serves a notable role in
cell apoptosis and proliferation in addition to other activities.
One study confirmed that it possesses a specific role in the
pathophysiology of angiopathy [6]. The activated PI3K-Akt
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signaling pathway has also been demonstrated to increase
insulin sensitivity, serve the role of regulating sugar lipid
metabolism, and protect the vascular endothelium [7].

Endothelial cells are a key target for diabetic vascular dis-
ease. Numerous studies have demonstrated that obesity,
insulin resistance, and type 2 diabetes are associated with
abnormal endothelial function and participate in the
occurrence and development of diabetes mellitus and small
vascular complications [8]. Vascular endothelial growth
factor (VEGF) is a crucial cytokine used to promote the
formation of new blood vessels, which may promote vas-
cular endothelial cells, smooth muscle cell mitosis, vascular
permeability, and angiogenesis [9, 10]. Previous studies on
the association between VEGF and vascular disease
revealed that serum VEGF was significantly increased in
patients with diabetes mellitus, and the increase of VEGF
was closely associated with the germination of diabetic
angiopathy [11, 12]. The present study intended to inves-
tigate the vascular lesion of type 2 diabetes mellitus in
Goto-Kakizaki (GK) rats and human umbilical vein endo-
thelial cells, in order to illustrate the mechanism of the
pathogenesis of the vascular lesion of type 2 diabetes mel-
litus. It was hypothesized that this may provide a pro-
found understanding of type 2 diabetes mellitus.

2. Materials and Methods

2.1. Ethics Statement.Male Wistar rats (200 ± 20 g, 5 months
old, specific-pathogen-free (SPF) grade) were obtained from
the Experimental Animal Center of Anhui Medical Univer-
sity (No. SCXK (Wan) 2011-002; Hefei, China). Spontaneous
type 2 diabetes mellitus GK rats (200 ± 20 g, 5 months old,
SPF grade) were obtained from the Shanghai Slix Experimen-
tal Animal Co. Ltd (No. SCXK (HU) 2012-0002). The study
was approved by the ethics committee of the Experimental
Animal Ethics Committee of Anhui Medical University,
Hefei, China. All surgery was performed under sodium pen-
tobarbital and minimized suffering.

2.2. Chemicals. L-Nitro-arginine-methyl-ester (L-NAME)
was purchased from Sigma-Aldrich (Merck KGaA, Darm-
stadt, Germany; batch no. N5751-10), and sodiumpentobarbi-
tal was purchased from Shanghai Chemical Reagent Co., Ltd.
(Shanghai, China). Anti-HIF-1 alpha antibody, anti-PTEN
antibody, anti-VEGFA antibody, anti-PI3K p85 antibody,
anti-PI3K p85 (phospho Y607) antibody, and anti-AKT1
(phospho S473) antibody were purchased from Abcam (batch
no. Ab1; ab32199; ab1316; ab86714; ab182651; ab81283; dilu-
tion 1 : 200; 1 : 100; 1 : 100; 1 : 100; 1 : 200; 1 : 200); TRIB3 poly-
clonal antibody, AKT (L321) polyclonal antibody, and AKT
(phospho-T308) polyclonal antibody were purchased from
Bioworld (batch no. BS60451; BS1502; BS4647; dilution
1 : 100; 1 : 100; 1 : 100).

2.3. Animal Experiments and Sample Collection. All rats were
allowed ad libitum access to food and water and a separate
room in a facility at a temperature of 18-22°C and humidity
of 40-60%. The Wistar rats were administered regular feed,
and the GK rats were fed a high-fat feed (as follows: normal

feed, 88.2%; refined lard, 10%; cholesterol, 1.5%; and pig bile
salt, 0.3%). Subsequent to acclimatization for 1 week, the cau-
dal edge of the liver in GK rats exhibited a high blood flow
when the rats were awake and the blood glucose of the GK
rats was determined using a Roche glucose meter (Roche
Diagnostics, Basel, Switzerland). The standard of type 2 dia-
betes mellitus is blood sugar > 11 1 mmol/l, and the results
met these criteria. The rats were randomly divided into a
GK control group (n = 10), a GK experimental model group
(n = 10), and a Wistar control group (n = 10). The drinking
water from the GK experimental model group had L-
NAME (0.1mg/kg) added to it for continuous molding for
42 days. All rats were anesthetized with sodium pentobarbital
(30mg/kg, intraperitoneal injection), and abdominal aortic
tissues were sealed and stored at -80°C. All rats were eutha-
nized prior to this isolation of aortic tissue by cervical
dislocation.

2.4. Cell Culture. Human umbilical vein endothelial cells
were cultured in RPMI-1640 medium (Thermo Fisher Scien-
tific, Inc., Waltham, MA, USA) with 10% fetal bovine serum
and 1% penicillin/streptomycin (Sigma-Aldrich; Merck
KGaA). Cells were incubated under 5% CO2 at 37

°C; normal
medium was 5.5% glucose.

2.5. MTT Cell Experiment. The cell seed plate was treated
with drug addiction according to the experimental scheme,
and the concentration of each sample was set to 3-5 replica-
tions. 20 milliliters of l MTT solution (5mg/ml, i.e., 0.5%
MTT) was added to all holes and incubated in the incubator
for 4 hours. Carefully remove the supernatant and add
DMSO (dimethylsulphoxide) at 150 milligrams per well for
10min at low speed (120~140 rpm/min) in the shaking table
for full dissolution of the crystals. The absorptive value of
490 nm was measured using an enzyme labelling machine,
and the inhibition rate of the drug on cells was calculated
according to the formula.

2.6. Blood Pressure and Heart Rate Analysis. Systolic blood
pressure, diastolic blood pressure, mean blood pressure,
and heart rate of the rats were monitored using a tail blood
pressure measuring instrument, and the mean blood pressure
of each animal was measured three times.

2.7. Histological Analysis. A right lobe of each aorta abdomi-
nalis tissue from each rat was fixed in 10% neutral formalin
and stained with hematoxylin and eosin (H&E), Masson,
and Verhoeff staining for histological examination.

2.8. Immunofluorescence Analysis. Initially, subsequent to
drying, the cells were evenly distributed in the center of the
cover glass with a group pen; 50-100μl of the membrane
working fluid was added to each dish, incubated at room
temperature for 20min, and then washed with phosphate
buffered saline (PBS) for 5min each time. The tissue was then
evenly covered with 3% bovine serum albumin in the ring,
and the temperature was maintained for 30min at room tem-
perature. Following this, the cells were gently shaken with the
sealing fluid in the orifice plate, mixed with PBS, and then the
cell culture plate was placed flat on a wet box at 4°C for
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incubation overnight. The cell orifice plate was then placed
on the decolorized rocking bed 3 times for 5min each time.
Following drying, the two anticoated tissues of the corre-
sponding species in the inner circle were incubated for
50min. The slide was then placed in PBS (pH7.4) and
washed three times on the decolorized bed for 5min each
time. Once the section was dried, DAPI dye was added to
the ring and incubated for 10min. The slide was then placed
in PBS (pH7.4) and washed three times on the decolorized
bed for 5min each time. The glass slide was dried and then
sealed with antifluorescence quenching. The images were
observed and collected under a fluorescence microscope.

2.9. Reverse Transcriptase-Quantitative Polymerase Chain
Reaction (RT-qPCR) Analysis. TRIzol reagent (Invitrogen;
Thermo Fisher Scientific, Inc.) was used to isolate and purify
total RNA according to the manufacturer’s protocol. The
quantity and quality of the RNA samples were determined
using the NanoDrop 2000 instrument (Thermo Fisher Scien-
tific, Inc.). The RNA integrity was assessed by electrophoresis
with denaturing agarose gel.

RT-qPCRwasperformedusingafluorescencequantitative
PCR instrument (ABI 7300) according to the manufacturer’s

protocol. β-Actin was used as a control. All PCR primers used
are listed in Table 1. All experiments were performed in tripli-
cate. The data was analyzed using the 2-ΔΔCq method.

2.10. Western Blot Analysis. Cells were scraped and lysed in
RIPA buffer (cat no. P0013B; Beyotime Institute of Biotech-
nology, Haimen, China), and proteins were measured with
a bicinchoninic acid protein assay kit (cat no. P0010; Beyo-
time Institute of Biotechnology). The primary antibodies
used in the experiments are as follows: Akt (cat no. BS2987,
1 : 500; Bioworld Technology, Inc., St. Louis Park, MN,
USA), VEGF (cat no. ab1316, 1 : 150; Abcam, Cambridge,
UK), phosphatase and tensin homolog (PTEN; cat no.
ab32199, 1 : 500; Abcam), and β-actin (cat no. ab8226,
1 : 2,000; Abcam), followed by horseradish peroxidase-
conjugated secondary antibodies (cat no. A0208, 1 : 1,000;
Beyotime Institute of Biotechnology). Protein bands were
visualized using electrochemiluminescence reagents (cat no.
P0018; Beyotime Institute of Technology).

2.11. Statistical Analysis. Experimental data were presented
as the mean ± standard deviation. Statistical comparisons
were performed using Student’s t-test, and P < 0 05 was con-
sidered to indicate a statistically significant difference.

3. Results

3.1. MTT Cell Experiment Result.MTT data showed that high
glucose has inhibited cell activity (Table 2).

3.2. Blood Pressure and Heart Rate. The heart rate results in
the rats revealed that the heart rate of the GK control group
was significantly higher compared with in the Wistar control
group (P < 0 05), but no significant difference was identified
when compared with the GK experimental model group.

Table 1: Real-time quantitative PCR primer sequence.

Gene name GeneBank ID Sense primer Antisense primer Product length

Akt NM_005163 GCACAAACGAGGGGAGTACAT AGCGGATGATGAAGGTGTTGG 192

PI3K NM_181523 ACCACTACCGGAATGAATCTCT GGGATGTGCGGGTATATTCTTC 207

PENT NM_000314 AGGGACGAACTGGTGTAATGA CTGGTCCTTACTTCCCCATAGAA 100

VEGF NM_001171627 AGGGCAGAATCATCACGAAGT AGGGTCTCGATTGGATGGCA 75

ACTA NM_001101 CATGTACGTTGCTATCCAGGC CTCCTTAATGTCACGCACGAT 250

Table 2: MTT cell experiment data.

Group OD average (24 h) OD average (48 h) Inhibition ratio (24 h) Inhibition ratio (48 h)

Normal HUVEC 0.87 1.17 — —

30mM high glucose group 0.84 0.94 0.03 0.19

5.5mM glucose + 24 5 mM mannitol
high osmotic pressure group

0.84 0.94 0.03 0.20

5% drug serum 0.85 1.06 0.03 0.09

10% drug serum 0.81 0.92 0.07 0.21

15% drug serum 0.78 0.81 0.11 0.31

20% drug serum 0.68 0.73 0.22 0.38

25% drug serum 0.62 0.54 0.29 0.54

30% drug serum 0.53 0.50 0.39 0.57

Table 3: The SBP, DBP, MBP, and HR of rats (, n = 10).

Wistar control group GK control group
GK experimental
model group

SBP 128 37 ± 4 92 185 20±10 06∗∗ 187 31 ± 10 29
DBP 117 86 ± 5 45 167 45±6 73∗∗ 162 72 ± 7 93
MBP 124 86 ± 4 14 179 28±6 12∗∗ 179 11 ± 6 71
HR 327 10 ± 12 16 442 20±17 77∗∗ 439 00 ± 24 32
Note: compared with the control group, ∗∗P < 0 05.
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Similarly, systolic blood pressure in the GK control group
was significantly higher compared with the Wistar control
group (P < 0 05), but no significant difference was identified
compared with the GK experimental model group.

Additionally, diastolic blood pressure in the GK control
group was significantly higher when compared with that of
the Wistar control group (P < 0 05), but not compared with
the GK experimental model group. Finally, the mean blood
pressure in the GK control group was significantly higher
when compared with that of the Wistar control group
(P < 0 05), but not when compared with the GK experimen-
tal model group (Table 3).

3.3. Histopathology. H&E staining revealed that the rats in the
Wistar control group presented with a flat abdominal aorta

intima and flat endothelial cells, clingy on flat in elastic plate,
neatly and elastic plate with smooth muscle cells in parallel
arrangement, intimal smooth and tidy. Compared with the con-
trol group, there was thickening and breakage of the intima, the
endothelial cells were partially detached, swollen, and infiltrated
in the rats in the GK experimental model group. Additionally,
the smooth muscle cells of the medium membrane had under-
gone hypertrophy, were distorted, and had an arranged disor-
der, and the number of layers was increased (Figure 1(a)).

Masson staining revealed that the aortic smooth muscle
cells and elastic fibers were dyed red and the collagen fibers
were blue-green. Rats from the Wistar control group demon-
strated that the collagenous fibers of the abdominal aorta wall
are evenly distributed and are slender and the adjacent cells
have a good network of collagen fibers. The fibrosis of the
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Figure 1: Histological examination of the aorta abdominalis tissue of type 2 diabetes mellitus in rats (magnification ×200). (a) H&E staining;
(b) Masson staining; (c) Verhoeff staining; A: Wistar control group; B: GK experimental model group. 1: endothelium cells; 2: swollen and
infiltrated endothelium cells; 3: media thickness; 4: collagen fibers; 5: peritubular collagen fibers; 6: elastic fibers; 7: elastic fiber fracture.
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vessels was very light. Compared with the control group, the
collagenous fibers of the abdominal aorta were increased, and
the collagen fibers were interlinked into nets or clumps and
arranged in a disordered and unevenly distributed manner,
tightly surrounding the smooth muscle cells in the rats of
the GK experimental model group (Figure 1(b)).

Verhoeff staining revealed that the membrane elastic fibers
in the aorta were black or blue-black and the smooth muscle
fibers and collagen fibers were red. Rats from the Wistar con-
trol group revealed that the abdominal aorta elastic fiber distri-
bution was uniform, neat, and complete without fracture.

Compared with the control group, the abdominal aorta elastic
fibers were circular, the arrangement was loose, the distribution
was unevenly distributed, and the visible fracture was notable
in the rats of the GK experimental model group (Figure 1(c)).

3.4. Fluorescence Intensity Results. Under a confocal micro-
scope, the expression of VEGF, PTEN, PI3K, and Akt in
the cells produced blue fluorescence; VEGF in the control
group cells produced comparatively weak fluorescence and
an enhanced fluorescence intensity in the high-sugar stimu-
lus group. The PI3K and Akt expression in the control group

A
(a)

(b)

(c)

(d)

B

A B

A B

A

Control group cell High-sugar stimulus group cell

B

Figure 2: Immunofluorescence analysis of HUVEC cells (magnification ×200). (a) VEGF; (b) AKT; (c) PI3K; (d) PTEN; A: control group cell;
B: high-sugar stimulus group.
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cell demonstrated weak fluorescence and enhanced fluores-
cence intensity in the high-sugar stimulus group. PTEN in
the control group cell demonstrated strong fluorescence,
and the fluorescence intensity of the high-sugar stimulus
group was comparatively weak (Figures 2 and 3).

3.5. MRNA Expression Level Results. The amplification curve
revealed that in the present study, the reaction curves of PTEN,
Akt, PI3K, andVEGFwere substantial, and these exhibited high
efficiency rates and good parallelism of amplification curve.
Additionally, a repeated reaction produced a similar level of
amplification, demonstrating the efficiency, repeatability, and
accuracy of this experiment. The low concentration curve index
period is obvious, not easy to appear false masculine misjudg-
ment, and had high sensitivity. The melting curve revealed a
curve with a single peak, indicating that the amplification prod-
uct was pure. The product length met the design requirements,
indicating that the Cq value produced was accurate.

RT-qPCR revealed that PTEN mRNA expression levels
in the high-sugar stimulus group were significantly lower
compared with the control group (P < 0 01) and that the
mRNA expression levels of PI3K, Akt, and VEGF in the
high-sugar stimulus group were significantly higher com-
pared with the control group (P < 0 01) (Figure 4).

3.6. Protein Expression Level Results. Western blot analysis
revealed that the protein expression levels of PTEN in the
high-sugar stimulus group were significantly lower compared

with the control group (P < 0 01) and the protein expression
levels of PI3K, Akt, and VEGF in the high-sugar stimulus
group were significantly higher compared with the control
group (P < 0 01) (Figure 5).

4. Discussion

GK rats are internationally recognized nonobesity type 2 dia-
betes mellitus animal models with the following characteris-
tics: lower glucose-stimulated insulin secretion, excessive
liver sugar production, and muscle and adipose tissue
medium insulin resistance [13, 14]. The administration of
the nitric oxide (NO) synthase inhibitor L-NAME for
extended periods of time may inhibit endothelial NO synthe-
sis, damage vascular endothelial function, and induce the
expression of cytokines including VEGF in order to study
animal models of type 2 diabetes mellitus and their large vas-
cular lesions [15, 16]. L-NAME could further induce the vas-
cular disease, which was administered in an animal study. In
the present study, the heart rate, systolic blood pressure, dia-
stolic blood pressure, and mean blood pressure were assessed
and were revealed to be higher in the GK control group com-
pared with the Wistar control group; and no difference was
revealed when compared with the GK experimental model
group. H&E, Masson’s, and Verhoeff staining revealed that
the rats from the GK experimental model group had damage
at different levels.

0
20
40
60
80

100
120
140

CN HG

CN HG

CN HG

CN HG

⁎⁎

PT
EN

 ex
pr

es
sio

n 
(%

 o
f c

on
tr

ol
)

V
EG

F 
ex

pr
es

sio
n 

(%
 o

f c
on

tr
ol

)
PI

3K
 ex

pr
es

sio
n 

(%
 o

f c
on

tr
ol

) 350

300

250

200

150

100

50

0

⁎⁎

⁎⁎

⁎⁎

A
kt

 ex
pr

es
sio

n 
(%

 o
f c

on
tr

ol
)

350

300

250

200

150

100

50

0

350

400

450

300

250

200

150

100

50

0

Figure 3: The relative expression of VEGF, AKT, PI3K, and PTEN in immunofluorescence analysis. Compared with the control group, ∗∗

P < 0 01.
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Vascular endothelial cells are highly differentiated
monolayer cells which cover the surface of the vascular
lumen and serve important functions including regulating
vascular permeability, maintaining blood flow, and regulat-
ing vascular smooth muscle cell proliferation. Endothelial
cell apoptosis may increase smooth muscle cell proliferation
and migration, enhance blood coagulation, and increase
leukocyte infiltration into the endothelium thus leading to
endothelial dysfunction [17, 18]. Multiple metabolic
disorders in type 2 diabetes mellitus accelerate this
pathophysiological process. In the state of diabetes,
numerous factors including high blood sugar levels,
glycation end products being produced, ischemia, and
hypoxia promote the expression of cytokines associated
with angiogenesis [19]. The dysfunction of endothelial cells
has become an important initial factor for the development
of type 2 diabetes mellitus and its vascular complications.
Additionally, atherosclerosis is a type of chronic

pathological change in the middle arteries, which is the
basis of the formation of a diabetic vascular system [20, 21].

VEGF is a glycosylated mitogen that specifically affects
endothelial cells and has various effects, including mediating
increased vascular permeability, inducing angiogenesis, vas-
culogenesis, and endothelial cell growth, promoting cell
migration, and inhibiting apoptosis [22–24]. VEGF addition-
ally mediates vascular endothelial permeability and prolifer-
ation [25]. In the present study, the fluorescence intensity,
protein expression, and mRNA expression of VEGF in the
high-sugar stimulus group were higher compared with the
control group. These results illustrate that angiogenesis is
an important aspect of the pathogenesis of type 2 diabetes
mellitus vascular disease.

PTEN is a tumor suppressor which is mutated in a
number of different cancer types at a high frequency.
Phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase is
encoded by this gene. This protein dephosphorylates
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Figure 4: The expression of VEGF, AKT, PI3K, and PTEN mRNA in HUVEC cells. Compared with the control group, ∗∗P < 0 01.
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phosphoinositide substrates unlike other protein tyrosine
phosphatases [26]. It functions as a tumor suppressor and
regulates intracellular levels of phosphatidylinositol-3,4,5-

trisphosphate in cells by negatively regulating the Akt signal-
ing pathway. This also regulates energy metabolism in the
mitochondria [27, 28].
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Angiogenesis is a tyrosine kinase and its ligand signals
through a complicated endothelial molecular system, and
this ligand signaling system regulates the endothelial cell
function, including endothelial cell proliferation, migration,
and capillary formation [29]. The VEGF/VEGF receptor sig-
naling system controls these processes and is closely associ-
ated with the PI3K signaling pathway [30, 31]. PI3K is
activated on the membrane subsequent to the generation of
phosphatidylinositol triphosphate (PIP3), resulting in the
activation of downstream proteins including Akt which serve
a vital role in the process of angiogenesis. PIP3 is the target
molecule of phosphatase action, which is the key component
of the cell growth regulation pathway. The main function is
to stimulate cell growth and block apoptosis [32, 33]. PTEN
produces PIP3 for phosphorylation and inhibits the phos-
phorylation of the PI3K kinase, thereby blocking the Akt sig-
naling pathway, blocking the downstream enzyme activity,
and regulating the endothelial cells’ VEGF signaling path-
ways and cellular response. Therefore, PTEN serves a nega-
tive regulatory role in the development of novel blood
vessels [34]. By inhibiting the PI3K/Akt signaling pathway,
PTEN serves an inhibitory role in the formation and develop-
ment of the pathological neovascularization of atheroscle-
rotic plaques [35–37].

In the present study, the fluorescence intensity of Akt and
PI3K in the high-sugar stimulus group was stronger com-
pared with the control group, and that of PTEN in the
high-sugar stimulus group was weaker compared with the
control group. Akt and PI3K mRNA and protein expression
in the high-sugar stimulus group were higher compared with
the control group, and that of PTEN mRNA in the high-
sugar stimulus group was lower compared with the control
group. These results illustrate that PTEN serves a negative
regulatory role in the development of novel blood vessels
and may inhibit the PI3K/Akt signaling pathway. It inhibits
the formation and development of the pathological neovas-
cularization of an atheromatous plaque.

In summary, when vascular disease occurred in type 2
diabetes rats, the expression of VEGF in the aortic tissue
was increased, the expression of PTEN was decreased, and
the activity of the PI3K/Akt signaling pathway was decreased.
Excessive proliferation of vascular endothelial cells is a com-
mon model in diabetic vascular disease. Therefore, inhibiting
excessive proliferation of vascular endothelial cells is condu-
cive to the effective control of diabetic vascular disease. This
study furthered the understanding of the mechanisms of type
2 diabetes and produced a potential method for future dis-
ease treatment studies, which may contribute to the develop-
ment of novel diagnostic markers and therapeutic targets for
the clinic treatment of type 2 diabetes. However, there were
still some limitations in the current study. Glucose metabo-
lism is mainly detected when insulin resistance mechanism
is performed, while we focus on vascular lesions, so neverthe-
less, further experiments are required to validate their effects
in type 2 diabetes. At the present stage, we mainly want to
explain the mechanism of damage to large vessels, especially
endothelial cells in the process of diabetes. We are also
designing and carrying out the mechanism of the regulation
of angiogenesis by antihypertensive drugs.
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